'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  not(true()) -> false()
     , not(false()) -> true()
     , evenodd(x, 0()) -> not(evenodd(x, s(0())))
     , evenodd(0(), s(0())) -> false()
     , evenodd(s(x), s(0())) -> evenodd(x, 0())}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  not^#(true()) -> c_0()
    , not^#(false()) -> c_1()
    , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
    , evenodd^#(0(), s(0())) -> c_3()
    , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
  
  The usable rules are:
   {  evenodd(x, 0()) -> not(evenodd(x, s(0())))
    , evenodd(0(), s(0())) -> false()
    , evenodd(s(x), s(0())) -> evenodd(x, 0())
    , not(true()) -> false()
    , not(false()) -> true()}
  
  The estimated dependency graph contains the following edges:
   {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
     ==> {not^#(false()) -> c_1()}
   {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
     ==> {not^#(true()) -> c_0()}
   {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
     ==> {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
  
  We consider the following path(s):
   1) {  evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
       , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
       , not^#(true()) -> c_0()}
      
      The usable rules for this path are the following:
      {  evenodd(x, 0()) -> not(evenodd(x, s(0())))
       , evenodd(0(), s(0())) -> false()
       , evenodd(s(x), s(0())) -> evenodd(x, 0())
       , not(true()) -> false()
       , not(false()) -> true()}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  evenodd(x, 0()) -> not(evenodd(x, s(0())))
               , evenodd(0(), s(0())) -> false()
               , evenodd(s(x), s(0())) -> evenodd(x, 0())
               , not(true()) -> false()
               , not(false()) -> true()
               , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
               , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
               , not^#(true()) -> c_0()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {not(false()) -> true()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {not(false()) -> true()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [2]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {evenodd(0(), s(0())) -> false()}
            and weakly orienting the rules
            {not(false()) -> true()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd(0(), s(0())) -> false()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {not^#(true()) -> c_0()}
            and weakly orienting the rules
            {  evenodd(0(), s(0())) -> false()
             , not(false()) -> true()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {not^#(true()) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [8]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [3]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
            and weakly orienting the rules
            {  not^#(true()) -> c_0()
             , evenodd(0(), s(0())) -> false()
             , not(false()) -> true()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [2]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  evenodd(s(x), s(0())) -> evenodd(x, 0())
             , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
            and weakly orienting the rules
            {  evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
             , not^#(true()) -> c_0()
             , evenodd(0(), s(0())) -> false()
             , not(false()) -> true()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  evenodd(s(x), s(0())) -> evenodd(x, 0())
               , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [1]
                  true() = [0]
                  false() = [2]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [2]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {not(true()) -> false()}
            and weakly orienting the rules
            {  evenodd(s(x), s(0())) -> evenodd(x, 0())
             , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
             , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
             , not^#(true()) -> c_0()
             , evenodd(0(), s(0())) -> false()
             , not(false()) -> true()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {not(true()) -> false()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [8]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))}
              Weak Rules:
                {  not(true()) -> false()
                 , evenodd(s(x), s(0())) -> evenodd(x, 0())
                 , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
                 , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
                 , not^#(true()) -> c_0()
                 , evenodd(0(), s(0())) -> false()
                 , not(false()) -> true()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))}
                Weak Rules:
                  {  not(true()) -> false()
                   , evenodd(s(x), s(0())) -> evenodd(x, 0())
                   , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
                   , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
                   , not^#(true()) -> c_0()
                   , evenodd(0(), s(0())) -> false()
                   , not(false()) -> true()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  not_1(5) -> 4
                 , not_2(9) -> 5
                 , not_2(9) -> 9
                 , true_0() -> 2
                 , true_1() -> 4
                 , true_2() -> 4
                 , true_2() -> 5
                 , true_2() -> 9
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_1() -> 5
                 , false_1() -> 9
                 , false_2() -> 4
                 , false_2() -> 5
                 , false_2() -> 9
                 , evenodd_0(2, 2) -> 4
                 , evenodd_1(2, 6) -> 5
                 , evenodd_1(2, 7) -> 5
                 , evenodd_1(2, 7) -> 9
                 , evenodd_2(2, 10) -> 9
                 , 0_0() -> 2
                 , 0_1() -> 7
                 , 0_2() -> 11
                 , s_0(2) -> 2
                 , s_1(7) -> 6
                 , s_2(11) -> 10
                 , not^#_0(2) -> 1
                 , not^#_0(4) -> 3
                 , not^#_1(5) -> 8
                 , c_0_0() -> 1
                 , c_0_1() -> 3
                 , c_0_2() -> 8
                 , evenodd^#_0(2, 2) -> 1
                 , c_2_0(3) -> 1
                 , c_2_1(8) -> 1
                 , c_4_0(1) -> 1}
      
   2) {  evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
       , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
       , not^#(false()) -> c_1()}
      
      The usable rules for this path are the following:
      {  evenodd(x, 0()) -> not(evenodd(x, s(0())))
       , evenodd(0(), s(0())) -> false()
       , evenodd(s(x), s(0())) -> evenodd(x, 0())
       , not(true()) -> false()
       , not(false()) -> true()}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  evenodd(x, 0()) -> not(evenodd(x, s(0())))
               , evenodd(0(), s(0())) -> false()
               , evenodd(s(x), s(0())) -> evenodd(x, 0())
               , not(true()) -> false()
               , not(false()) -> true()
               , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
               , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
               , not^#(false()) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  not(false()) -> true()
             , not^#(false()) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  not(false()) -> true()
               , not^#(false()) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [2]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {evenodd(0(), s(0())) -> false()}
            and weakly orienting the rules
            {  not(false()) -> true()
             , not^#(false()) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd(0(), s(0())) -> false()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
            and weakly orienting the rules
            {  evenodd(0(), s(0())) -> false()
             , not(false()) -> true()
             , not^#(false()) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [2]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [8]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {not(true()) -> false()}
            and weakly orienting the rules
            {  evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
             , evenodd(0(), s(0())) -> false()
             , not(false()) -> true()
             , not^#(false()) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {not(true()) -> false()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [13]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_2(x1) = [1] x1 + [4]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  evenodd(s(x), s(0())) -> evenodd(x, 0())
             , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
            and weakly orienting the rules
            {  not(true()) -> false()
             , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
             , evenodd(0(), s(0())) -> false()
             , not(false()) -> true()
             , not^#(false()) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  evenodd(s(x), s(0())) -> evenodd(x, 0())
               , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [2]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))}
              Weak Rules:
                {  evenodd(s(x), s(0())) -> evenodd(x, 0())
                 , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
                 , not(true()) -> false()
                 , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
                 , evenodd(0(), s(0())) -> false()
                 , not(false()) -> true()
                 , not^#(false()) -> c_1()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))}
                Weak Rules:
                  {  evenodd(s(x), s(0())) -> evenodd(x, 0())
                   , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
                   , not(true()) -> false()
                   , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
                   , evenodd(0(), s(0())) -> false()
                   , not(false()) -> true()
                   , not^#(false()) -> c_1()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  not_1(5) -> 4
                 , not_2(9) -> 5
                 , not_2(9) -> 9
                 , true_0() -> 2
                 , true_1() -> 4
                 , true_2() -> 4
                 , true_2() -> 5
                 , true_2() -> 9
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_1() -> 5
                 , false_1() -> 9
                 , false_2() -> 4
                 , false_2() -> 5
                 , false_2() -> 9
                 , evenodd_0(2, 2) -> 4
                 , evenodd_1(2, 6) -> 5
                 , evenodd_1(2, 7) -> 5
                 , evenodd_1(2, 7) -> 9
                 , evenodd_2(2, 10) -> 9
                 , 0_0() -> 2
                 , 0_1() -> 7
                 , 0_2() -> 11
                 , s_0(2) -> 2
                 , s_1(7) -> 6
                 , s_2(11) -> 10
                 , not^#_0(2) -> 1
                 , not^#_0(4) -> 3
                 , not^#_1(5) -> 8
                 , c_1_0() -> 1
                 , c_1_0() -> 3
                 , c_1_1() -> 3
                 , c_1_1() -> 8
                 , c_1_2() -> 8
                 , evenodd^#_0(2, 2) -> 1
                 , c_2_0(3) -> 1
                 , c_2_1(8) -> 1
                 , c_4_0(1) -> 1}
      
   3) {  evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
       , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
      
      The usable rules for this path are the following:
      {  evenodd(x, 0()) -> not(evenodd(x, s(0())))
       , evenodd(0(), s(0())) -> false()
       , evenodd(s(x), s(0())) -> evenodd(x, 0())
       , not(true()) -> false()
       , not(false()) -> true()}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  evenodd(x, 0()) -> not(evenodd(x, s(0())))
               , evenodd(0(), s(0())) -> false()
               , evenodd(s(x), s(0())) -> evenodd(x, 0())
               , not(true()) -> false()
               , not(false()) -> true()
               , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
               , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {evenodd(0(), s(0())) -> false()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd(0(), s(0())) -> false()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [7]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
            and weakly orienting the rules
            {evenodd(0(), s(0())) -> false()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [5]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {not(true()) -> false()}
            and weakly orienting the rules
            {  evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
             , evenodd(0(), s(0())) -> false()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {not(true()) -> false()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [8]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {not(false()) -> true()}
            and weakly orienting the rules
            {  not(true()) -> false()
             , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
             , evenodd(0(), s(0())) -> false()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {not(false()) -> true()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [1]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  evenodd(s(x), s(0())) -> evenodd(x, 0())
             , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
            and weakly orienting the rules
            {  not(false()) -> true()
             , not(true()) -> false()
             , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
             , evenodd(0(), s(0())) -> false()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  evenodd(s(x), s(0())) -> evenodd(x, 0())
               , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [1] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [6]
                  not^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [9]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))}
              Weak Rules:
                {  evenodd(s(x), s(0())) -> evenodd(x, 0())
                 , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
                 , not(false()) -> true()
                 , not(true()) -> false()
                 , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
                 , evenodd(0(), s(0())) -> false()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))}
                Weak Rules:
                  {  evenodd(s(x), s(0())) -> evenodd(x, 0())
                   , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))
                   , not(false()) -> true()
                   , not(true()) -> false()
                   , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))
                   , evenodd(0(), s(0())) -> false()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  not_1(5) -> 4
                 , not_2(9) -> 5
                 , not_2(9) -> 9
                 , true_0() -> 2
                 , true_1() -> 4
                 , true_2() -> 4
                 , true_2() -> 5
                 , true_2() -> 9
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_1() -> 5
                 , false_1() -> 9
                 , false_2() -> 4
                 , false_2() -> 5
                 , false_2() -> 9
                 , evenodd_0(2, 2) -> 4
                 , evenodd_1(2, 6) -> 5
                 , evenodd_1(2, 7) -> 5
                 , evenodd_1(2, 7) -> 9
                 , evenodd_2(2, 10) -> 9
                 , 0_0() -> 2
                 , 0_1() -> 7
                 , 0_2() -> 11
                 , s_0(2) -> 2
                 , s_1(7) -> 6
                 , s_2(11) -> 10
                 , not^#_0(2) -> 1
                 , not^#_0(4) -> 3
                 , not^#_1(5) -> 8
                 , evenodd^#_0(2, 2) -> 1
                 , c_2_0(3) -> 1
                 , c_2_1(8) -> 1
                 , c_4_0(1) -> 1}
      
   4) {evenodd^#(0(), s(0())) -> c_3()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           not(x1) = [0] x1 + [0]
           true() = [0]
           false() = [0]
           evenodd(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           s(x1) = [0] x1 + [0]
           not^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1() = [0]
           evenodd^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {evenodd^#(0(), s(0())) -> c_3()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {evenodd^#(0(), s(0())) -> c_3()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd^#(0(), s(0())) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [0] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  not^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {evenodd^#(0(), s(0())) -> c_3()}
            
            Details:         
              The given problem does not contain any strict rules
      
   5) {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           not(x1) = [0] x1 + [0]
           true() = [0]
           false() = [0]
           evenodd(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           s(x1) = [0] x1 + [0]
           not^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1() = [0]
           evenodd^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
              
              Details:
                 Interpretation Functions:
                  not(x1) = [0] x1 + [0]
                  true() = [0]
                  false() = [0]
                  evenodd(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [8]
                  not^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  evenodd^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))}
            
            Details:         
              The given problem does not contain any strict rules