'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0())} Details: We have computed the following set of weak (innermost) dependency pairs: { not^#(true()) -> c_0() , not^#(false()) -> c_1() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd^#(0(), s(0())) -> c_3() , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} The usable rules are: { evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , not(true()) -> false() , not(false()) -> true()} The estimated dependency graph contains the following edges: {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} ==> {not^#(false()) -> c_1()} {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} ==> {not^#(true()) -> c_0()} {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} ==> {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} We consider the following path(s): 1) { evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , not^#(true()) -> c_0()} The usable rules for this path are the following: { evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , not(true()) -> false() , not(false()) -> true()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , not(true()) -> false() , not(false()) -> true() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , not^#(true()) -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules {not(false()) -> true()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {not(false()) -> true()} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [2] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {evenodd(0(), s(0())) -> false()} and weakly orienting the rules {not(false()) -> true()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd(0(), s(0())) -> false()} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {not^#(true()) -> c_0()} and weakly orienting the rules { evenodd(0(), s(0())) -> false() , not(false()) -> true()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {not^#(true()) -> c_0()} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [8] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [3] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} and weakly orienting the rules { not^#(true()) -> c_0() , evenodd(0(), s(0())) -> false() , not(false()) -> true()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [2] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [9] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} and weakly orienting the rules { evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , not^#(true()) -> c_0() , evenodd(0(), s(0())) -> false() , not(false()) -> true()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} Details: Interpretation Functions: not(x1) = [1] x1 + [1] true() = [0] false() = [2] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [2] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [4] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {not(true()) -> false()} and weakly orienting the rules { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , not^#(true()) -> c_0() , evenodd(0(), s(0())) -> false() , not(false()) -> true()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {not(true()) -> false()} Details: Interpretation Functions: not(x1) = [1] x1 + [8] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))} Weak Rules: { not(true()) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , not^#(true()) -> c_0() , evenodd(0(), s(0())) -> false() , not(false()) -> true()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))} Weak Rules: { not(true()) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , not^#(true()) -> c_0() , evenodd(0(), s(0())) -> false() , not(false()) -> true()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { not_1(5) -> 4 , not_2(9) -> 5 , not_2(9) -> 9 , true_0() -> 2 , true_1() -> 4 , true_2() -> 4 , true_2() -> 5 , true_2() -> 9 , false_0() -> 2 , false_0() -> 4 , false_1() -> 5 , false_1() -> 9 , false_2() -> 4 , false_2() -> 5 , false_2() -> 9 , evenodd_0(2, 2) -> 4 , evenodd_1(2, 6) -> 5 , evenodd_1(2, 7) -> 5 , evenodd_1(2, 7) -> 9 , evenodd_2(2, 10) -> 9 , 0_0() -> 2 , 0_1() -> 7 , 0_2() -> 11 , s_0(2) -> 2 , s_1(7) -> 6 , s_2(11) -> 10 , not^#_0(2) -> 1 , not^#_0(4) -> 3 , not^#_1(5) -> 8 , c_0_0() -> 1 , c_0_1() -> 3 , c_0_2() -> 8 , evenodd^#_0(2, 2) -> 1 , c_2_0(3) -> 1 , c_2_1(8) -> 1 , c_4_0(1) -> 1} 2) { evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , not^#(false()) -> c_1()} The usable rules for this path are the following: { evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , not(true()) -> false() , not(false()) -> true()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , not(true()) -> false() , not(false()) -> true() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , not^#(false()) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { not(false()) -> true() , not^#(false()) -> c_1()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { not(false()) -> true() , not^#(false()) -> c_1()} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [2] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {evenodd(0(), s(0())) -> false()} and weakly orienting the rules { not(false()) -> true() , not^#(false()) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd(0(), s(0())) -> false()} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} and weakly orienting the rules { evenodd(0(), s(0())) -> false() , not(false()) -> true() , not^#(false()) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [2] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [9] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [8] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {not(true()) -> false()} and weakly orienting the rules { evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false() , not(false()) -> true() , not^#(false()) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {not(true()) -> false()} Details: Interpretation Functions: not(x1) = [1] x1 + [13] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [8] c_2(x1) = [1] x1 + [4] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} and weakly orienting the rules { not(true()) -> false() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false() , not(false()) -> true() , not^#(false()) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [2] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [4] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))} Weak Rules: { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , not(true()) -> false() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false() , not(false()) -> true() , not^#(false()) -> c_1()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))} Weak Rules: { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , not(true()) -> false() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false() , not(false()) -> true() , not^#(false()) -> c_1()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { not_1(5) -> 4 , not_2(9) -> 5 , not_2(9) -> 9 , true_0() -> 2 , true_1() -> 4 , true_2() -> 4 , true_2() -> 5 , true_2() -> 9 , false_0() -> 2 , false_0() -> 4 , false_1() -> 5 , false_1() -> 9 , false_2() -> 4 , false_2() -> 5 , false_2() -> 9 , evenodd_0(2, 2) -> 4 , evenodd_1(2, 6) -> 5 , evenodd_1(2, 7) -> 5 , evenodd_1(2, 7) -> 9 , evenodd_2(2, 10) -> 9 , 0_0() -> 2 , 0_1() -> 7 , 0_2() -> 11 , s_0(2) -> 2 , s_1(7) -> 6 , s_2(11) -> 10 , not^#_0(2) -> 1 , not^#_0(4) -> 3 , not^#_1(5) -> 8 , c_1_0() -> 1 , c_1_0() -> 3 , c_1_1() -> 3 , c_1_1() -> 8 , c_1_2() -> 8 , evenodd^#_0(2, 2) -> 1 , c_2_0(3) -> 1 , c_2_1(8) -> 1 , c_4_0(1) -> 1} 3) { evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} The usable rules for this path are the following: { evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , not(true()) -> false() , not(false()) -> true()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) , not(true()) -> false() , not(false()) -> true() , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} Details: We apply the weight gap principle, strictly orienting the rules {evenodd(0(), s(0())) -> false()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd(0(), s(0())) -> false()} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [7] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} and weakly orienting the rules {evenodd(0(), s(0())) -> false()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0()))))} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [5] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {not(true()) -> false()} and weakly orienting the rules { evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {not(true()) -> false()} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [8] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [4] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {not(false()) -> true()} and weakly orienting the rules { not(true()) -> false() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {not(false()) -> true()} Details: Interpretation Functions: not(x1) = [1] x1 + [1] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} and weakly orienting the rules { not(false()) -> true() , not(true()) -> false() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} Details: Interpretation Functions: not(x1) = [1] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] s(x1) = [1] x1 + [6] not^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [8] c_2(x1) = [1] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [9] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))} Weak Rules: { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , not(false()) -> true() , not(true()) -> false() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {evenodd(x, 0()) -> not(evenodd(x, s(0())))} Weak Rules: { evenodd(s(x), s(0())) -> evenodd(x, 0()) , evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0())) , not(false()) -> true() , not(true()) -> false() , evenodd^#(x, 0()) -> c_2(not^#(evenodd(x, s(0())))) , evenodd(0(), s(0())) -> false()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { not_1(5) -> 4 , not_2(9) -> 5 , not_2(9) -> 9 , true_0() -> 2 , true_1() -> 4 , true_2() -> 4 , true_2() -> 5 , true_2() -> 9 , false_0() -> 2 , false_0() -> 4 , false_1() -> 5 , false_1() -> 9 , false_2() -> 4 , false_2() -> 5 , false_2() -> 9 , evenodd_0(2, 2) -> 4 , evenodd_1(2, 6) -> 5 , evenodd_1(2, 7) -> 5 , evenodd_1(2, 7) -> 9 , evenodd_2(2, 10) -> 9 , 0_0() -> 2 , 0_1() -> 7 , 0_2() -> 11 , s_0(2) -> 2 , s_1(7) -> 6 , s_2(11) -> 10 , not^#_0(2) -> 1 , not^#_0(4) -> 3 , not^#_1(5) -> 8 , evenodd^#_0(2, 2) -> 1 , c_2_0(3) -> 1 , c_2_1(8) -> 1 , c_4_0(1) -> 1} 4) {evenodd^#(0(), s(0())) -> c_3()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: not(x1) = [0] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] s(x1) = [0] x1 + [0] not^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {evenodd^#(0(), s(0())) -> c_3()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {evenodd^#(0(), s(0())) -> c_3()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd^#(0(), s(0())) -> c_3()} Details: Interpretation Functions: not(x1) = [0] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] s(x1) = [1] x1 + [0] not^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [0] x1 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {evenodd^#(0(), s(0())) -> c_3()} Details: The given problem does not contain any strict rules 5) {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: not(x1) = [0] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] s(x1) = [0] x1 + [0] not^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} Details: Interpretation Functions: not(x1) = [0] x1 + [0] true() = [0] false() = [0] evenodd(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] s(x1) = [1] x1 + [8] not^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] evenodd^#(x1, x2) = [1] x1 + [1] x2 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {evenodd^#(s(x), s(0())) -> c_4(evenodd^#(x, 0()))} Details: The given problem does not contain any strict rules